
J .  Fluid Mech. (1985), vo2. 152, pp.  37S389 

Printed in oreat Britain 

379 

Surface waves in basins of variable depth 
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The linearized boundary-value problem for surface waves of frequency w in a closed 
basin of variable depth is reduced to a non-self-adjoint partial differential equation 
in the plane of the free surface. The corresponding variational form (which does not 
provide a defmite upper or lower bound) for the eigenvalue K = w8/g is constructed. 
A self-adjoint partial differential equation, for which the variational form is the 
Rayleigh quotient (which provides an upper bound to K ) ,  also is constructed; it offers 
significant advantages vis-A-vis the non-self-adjoint formulation, but at the expense 
of a more complicated operator. Three relatively simple variational approximations 
are constructed, two for a class of basins with sloping sides and the third for basins 
for which the variation of the depth relative to its mean is small. These general results 
are illustrated by comparison with Rayleigh’s (1899) results for a semicircular 
channel, Sen’s (1927) inverse results for a family of circular basins, and Lamb’s (1932) 
results for a shallow circular paraboloid. The eigenvalue for the dominant mode in 
the paraboloid is determined through O(S6), where S = depth/radius. 

1. Introduction 
Surface waves in water of variable depth, known as ‘seiches’ in lakes and inland 

seas (Hutchinson 1975), receive only limited attention in the standard treatises (Lamb 
1932 ; Wehausen & Laitone 1960). Various semi-empirical formulae and numerical 
methods (Chrystal 1905; Proudman 1915) are available for the estimation of their 
periods, and it now is possible, using discrete-grid or discrete-element methods, to 
obtain numerical solutions for basins of any realistic shape ; nevertheless, analytical 
solutions remain important both as checks for numerical algorithms and as indicators 
of parametric trends. 

A few exact solutions (of the linearized equations of motion) are available. 
Kirchhoff (1879) determined the complete set of modes for a channel of triangular 
cross-section, the sides of which form angles of mn/n with the horizontal, and Vint 
(1923) obtained similar results for an inverted, four-sided pyramid, the sides of which 
form angles of in with the horizontal. Lamb (8 193)t determined the complete set of 
modes for a shallow circular paraboloid, and Goldsbrough (1930) carried out the 
corresponding calculation for a shallow elliptical paraboloid. Sen (1927) and Storchi 
(1949,1952) determined basin shapes for assumed solutions, an inverse procedure that 
yields only a single mode for a particular basin (typically the dominant mode, which 
is the one of primary interest in practice) but is efficient and appears to merit further 
exploitation (see $3). Lundberg (1984) obtained second approximations (first 
approximations being provided by shallow-water theory) for the dominant 
antisymmetric and symmetric modes in a parabolic channel. 

(Lamb 1932). 
t This and subsequent references to Lamb are to sections in the 6th edition of Hydrodynamic, 
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Approximate solutions may be obtained by Rayleigh's (1873) method, which Lamb 
($259) applied to obtain the approximation w = 1.169(g/a): to the natural frequency 
of the dominant mode in a semicircular channel of radius a. Rayleigh subsequently 
(1899) obtained the second approximation w = 1.1644(g/a)t, the proximity of which 
to Lamb's first approximation suggests the effectiveness of the method and illustrates 
Rayleigh's principle that successive approximations are increasingly accurate upper 
bounds to the true frequency. 

The preceding solutions neglect nonlinear terms in the equations of motion. Ball 
(1963) used an inverse procedure to obtain exact solutions of the nonlinear, 
shallow-water equations for the dominant modes in a parabolic channel and a 
paraboloidal brtsin. 

Consider a basin of maximum depth d, horizontal scale a, free surface S, and lateral 
boundary as. The equations governing small, irrotational motion of an inviscid, 
incompressible fluid in the basin may, in principle, be reduced to a linear, homogeneous 
partial differential equation for either the free-surface displacement or the velocity 
potential in S, the solutions of which, subject to a kinematic boundary condition on 
as, yield an infinite, discrete set of eigenvalues for the natural frequencies of the free 
oscillations. If 

is sufficiently small this partial differential equation may be approximated by (Lamb, 

6 = d/a (1.1) 

§ 193) 
v ' ( h v C ) + K C =  0 (a+()), (1.2) 

where V is the gradient operator in a horizontal plane, h = h(x)  is the local depth, 
6 = C(x, t )  is the free-surface displacement, which is assumed to be harmonic in t with 
angular frequency w, 

(an inverse length) is the eigenvalue, x = (2, y) is the horizontal coordinate, and the 
implicit error factor is 1 + 0 ( S 2 ) .  The kinematic boundary condition is 

K = W2/g (1.3) 

h(n* VC) = 0 (x on &S), (1.4) 

where n is the normal to 3s. 

substituting a suitable approximation to 5 into the Rayleigh quotient 
The smallest of the eigenvalues of (1.2) and (1.4) may be approximated by 

where, here and subsequently, ( ) signifies an average over S. It follows from 
Rayleigh's principle, or from a direct construction of the first and second variations, 
that the quadratic functional (1.5) is a minimum with respect to first-order variations 
of 5 about the true solution of (1.2) and (1.4). (Higher eigenvalues also can be 
approximated by (1.5) if the trial function is orthogonal to each of the lower modes, 
but practical application typically is limited to the smallest eigenvalue or, in the case 
of a symmetrical basin, the smallest eigenvalue for each of the antisymmetric and 
symmetric motions.) 

I consider here the generalization of (1.2) and (1.5) for arbitrary depth with the 
primary aim of extending Lamb's shallow-water formulation to small but finite 6. 
In  $ $ 2 4 ,  I develop non-self-adjoint counterparts of (1.2) and (1.5) with the velocity 
potential a t  the free surface as the dependent variable and, following Sen (1927), 
obtain exact solutions for the dominant modes in one-parameter families of channels 
and circular and elliptical basins and for the dominant axisymmetric modes in a 
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second family of circular basins. In $55 and 6, I develop a self-adjoint formulation 
and obtain explicit counterparts of (1.2) and (1.5) with error factors of 1 + O(P) ,  which 
should suffice for the description of the effects of small but finite depth in most 
applications. I develop a matrix formulation, based on the complete set of eigen- 
functions for the Helmholtz equation in S, in the Appendix. This last development 
provides a systematic procedure for solving the boundary-value problem to any 
desired accuracy, but (since direct numerical solutions are likely to be more efficient 
for high-order approximations) its primary value is its elucidation of the formulations 
in § § 2 4 .  

Perhaps the most useful results of the present paper are the variational 
approximations : 

for the dominant mode in a basin for which S is symmetrical with respect to z = 0 
and h vanishes smoothly at a s  (i.e. the basin has sloping sides); the successive 
approximations 

K = (h) /<x2+$hh2)  (1.6) 

K = k tanh ( k ( h ) )  (1.7) 

and 

for the dominant mode in a basin for which h, the variation of h from its mean value 
{ h ) ,  is small compared with (h), and @ and k are determined by the solution of 

( V 2 + k 2 )  @ = 0, n*V@ = 0 on as. (1.9a, b)  

k2 = <(V@)2)/(@2>. (1.10) 

K = k tanh (k (h)) + [(h(V@)2)/(@2)] sech2 (k (h)) (1.8) 

The latter solution may be determined approximately by minimizing 

2. The boundary-value problem 
The assumption of irrotational flow of an inviscid, incompressible fluid in the rigid 

basin z = -h(x)  with the free surface z = 5 implies the existence of a velocity 
potential $ that satisfies: Laplace's equation, which we write in the form 

(2.1 a, b) 

where z is measured positive up along a vertical axis and V2 is the Laplacian operator 
in a horizontal plane; the boundary condition 

(a,z-Ae)$ = 0, A2 = -v2 = - (a:+a;), 

+,+Vh.V$i = 0 (2 = - h ) ;  (2.2) 

the (linearized) free-surface conditions 

$2 = 6,  9,+gc  = 0 (z = 01, (2.3a, b) 

which, on the assumption of harmonic motion of frequency w ,  may be combined to 
obtain 

9, = K$i (2 = O ) ,  (2.4) 

where K = w2/g.  It is implicit that w % f, where f is the Coriolis frequency - or, 
equivalently, that the period is small compared with 12 h. 

We pose the solution of ( 2 . 1 ~ )  in the form (Sen 1927) 

$i = {cosh Az @(x) + A-' sinh Az ul(x)} cos (wt + a), (2.5) 

where the operators cosh Az and A - l  sinhiz are defined by their power-series 
13-2 
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expansions together with (2.1 b), and a is an arbitrary phase c0nstant.t Invoking 
(2.2) and (2.4), we obtain 

{ - A  sinh Ah+ coshI&h(Vh*V)} @+{cash Ah-&-* sinh Ah(Vh*V)} Y = 0, (2.6) 

where, here and in (2.8) below, k2 operates only on @ and !P (but not on h), and 

y = K @ .  (2.7) 

Substituting (2.7) into (2.6) and invoking the operational identities (2.1 b) and 
V * ( U V V )  = UV2V+VU*VV,  we obtain 

wherein V. operates on both @ and h (whereas R2 operates only on @). The 
corresponding boundary condition is (essentially (1 .a)) 

h(n-V@) = 0 (x on as).  (2.9) 

(@) = 0. (2.10) 

Conservation of mass requires (c> = 0, which, through (2.3b), implies the constraint 

Letting h+O in (2.8) with K = O(h),  we recover (1.2). Higher approximations to 
(2.8) for quasi-shallow basins may be obtained by expanding the operators in powers 
of h, but if only the next (beyond the shallow-water) approximation is required it 
is preferable to invoke the self-adjoint form (5.4). 

If h is constant (Lamb, $257) (2.8) and (2.9) may be reduced to (1.9a, b) and 

K = k tanh kh (h = constant), (2.11) 

where k2 now is one of the family of eigenvalues determined by (1.9b). 

3. Inverse solutions 
Exact solutions of (2.8) may be obtained by positing @ as a polynomial of degree 

N in x and y, for which Van V@ = 0 if n > !j(iV- l),  and solving for h. The simplest 
case is (Sen 1927) 

for which the oscillating free surface, C = A(x /a )  sin (wt+a) ,  remains plane and (2.8) 
reduces to 

@ = (gA/oa)z, (3.1) 

a,(h-iKh2)+K5 = 0. (3.2) 

Integrating (3.2) and determining the additive function of y and the eigenvalue K 

through the assumptions that 

h = 0 on x = +X(y), X(0) = a,  h(0) = d,  (3.3a, b ,  c) 

1 
we obtain h = 2-[22+x2-X2(y)]l, 2 = - = $(6+6-l) (0 < 6 < 1)  (3.4a,b) 

K 

7 Solutions of the wave equation in the form (2.5) appear in Rayleigh's Theory of Sound (1878), 
where they are implicitly attributed to Poisson (1 820). Sen (1927) gives (2.5) with !Preplaced therein 
by (2.7), but he does not obtain the partial differential equation (2.8) for 9 and evidently overlooks 
the constraint (2.10). The convergence of the operational expansions may be tested in particular 
cases, for many of which the expansions are finite. 



Surface waves in basins of variable depth 383 

((3.4) yields h = a2/d at 2 = y = 0 if S > 1).  Combining ( l . l ) ,  (1.3), and (3.4b), we 
obtain 

Interesting choices of X(y) are 

(3.60, b,  c) 

X = a yields a channel with a hyperbolic profile that varies from a parabola as 84 0 
to a right triangle with sides inclined at 45" to the vertical (a particular case of 
Kirchhoff's problem; see Lamb, $258) as 8.T 1. The choice (3.6b) yields a family of 
circular basins that vary from a paraboloid as 6J. 0 to a right-angled cone as 8 .T 1. 
(The solution for the paraboloid agrees with that given by Lamb ($ 193) in the shallow- 
water approximation; however, Lamb gives the solution for all modes, whereas the 
present solution gives only the dominant mode.) The choice ( 8 . 6 ~ )  yields a 
corresponding family of elliptical basins. More generally, (3.1) and (3.5) provide the 
solution €or the dominant mode in any basin that is symmetrical with respect to its 
shorter axis (it also provides a solution for a basin that is symmetrical with respect 
to its longer axis, but this solution typically does not describe the dominant mode) 
and has a depth profile of the form ( 3 . 4 ~ ) ;  in particular, 

d 
h = - [x"(y)-29], "2 = - a2 2gd a2 (640) 

for a shallow basin. 
We obtain an axisymmetric solution that satisfies (2.10)t by positing 

(3.7a, b)  

and proceeding as above. The end results are 

h = w[12+w-a"]4 1 = *(S+@-') (0 < ' < a,, (3.9a, b )  

and (3.10) 

The circular basin described by (3.9) varies from a paraboloid as '$0 to a cone as 
8 f f ,  but the family differs from that of the preceding paragraph, and the eigenvalues 
(3.5) and (3.10) do not belong to the same basin except in the limit 6J.0, in which 
both correspond to the paraboloid h/d = 1 - ( ~ / a ) ~  and reduce to w2a2/gd = 2 and 8, 
respectively, in agreement with Lamb's ($ 193) results. 

Additional solutions may be generated by positing higher-order polynomials for 
@; e.g. 

@ = rm(A,+Alr'+A21A+ ...) c o s d  (m = 1,2, ...) (3.11) 

for a circular basin. However, as already noted, this procedure does not lead to a 
sequence of modes for a particular basin, and only the preceding results are likely 
to be of practical interest. 

t Sen (1927) evidently overlooks the constraint (2.10), in consequence of which his axisymmetric 
solutions are physically inadmissable. This oversight does not affect his solutions based on (3.1), 
which satisfies (2.10) by virtue of antisyrnmetry. 
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4. Variational approximations 
Multiplying (2.8) through by a function @* that satisfies (2.9) and (2.10), 

integrating over S, transforming the integrals of the divergence terms with the aid 
of Green’s theorem, and requiring @ to satisfy (2.9), we obtain 

(V @* ( A - l  sinh Ah V@)) 
<@*@)+<V@**{A-2(co~hAh- l)V@})’ 

K =  

which is invariant under scale transformations of @ and @* and (Finlayson 1972) 
stationary with respect to joint variations of @ about the solution of (2.8) and of @* 
about the adjoint of (2.8). We remark that (4.1) reduces to (1.5) in the limit h+O 
with @* = @; however, it is only in this limit that (2.8) is self-adjoint and that (4.1) 
is the Rayleigh quotient (cf. (6.3)). Except in this limit, we cannot assert that (4.1), 
quu variational approximation, provides either an upper or a lower bound to the true 
value of K .  

Perhaps the simplest trial function for the dominant mode in a basin for which h = 0 
along i3S (which condition ensures the satisfaction of (2.9)) and for which S is at least 
approximately symmetrical is given by (3.1). In the present application, x is directed 
across the axis of a two-dimensional channel or along the longer axis of a three- 
dimensional basin (it also may be directed along the shorter axis to obtain one of the 
higher eigenvalues). Substituting @ = @* = 5 into (4.1) and expanding the operators 
(note that V2nx = 0 for n > 0), we obtain 

K = (h) / (X2+;h2) .  (4.2) 

h = ( a 2 - 2 2 ) t  (4.3) 

Consider, for example, a semicircular cylinder of radius a, for which the sub- 
stitution of 

into (4.2) yields w(a/g): = 1.085. This compares with Lamb’s ($259) approximation, 
o(a/g)! = 1.169, obtained through the same approximation to @ in the true Rayleigh 
quotient. It is clear from Rayleigh’s second approximation, o(a/g)i = 1.1644, that 
the present approximation is less accurate than that provided by the Rayleigh 
quotient and that, unlike the latter, it  does not provide an upper bound to the true 
result; on the other hand, its calculation is manifestly simpler. 

As a second example, consider the circular paraboloid 

h = d [l-(;y], 

for which (4.2) is exact in the limit 640 (see above) and yields 

(4.4) 

(4.5a) 

= l-+P+$Y+ ... (4.5b) 

for finite 6. The coefficient -$ in (4.521) proves to be exact? (see $6), whilst the 
coefficient 3 compares with the exact value ?j+. 

The counterpart of (4.5a) for a parabolic channel, for which T is replaced by x in 
(4.4), is 02a2/2gd = (1 +p2)-’ z 1 -pa, in agreement with Lundberg (1984). 

t In this example, in which the error in the trial function is O(cP), the error in the variational 
approximation is O(F), just aa with the Rayleigh quotient (see $6). This appears to follow from 
the fact that (2.8) is self-adjoint for that class of functions for which Vz@ = 0, which includes (3.1). 
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Thedominant solutionof (1.9) providesanalternative trial function, thesubstitution 
of which for both @ and @* in (4.1), together with the identities (which hold only 
for solutions of (1.9)) 

A'@ = -V2@ = k2@, ((V@)') = k'(@'), (4.6a, b) 

yields K = k( (V@)z sinh kh)/(  (VCD)~ cosh kh). (4.7) 

The approximation (4.7) is especially appropriate if the variation of h from its mean 
value (h) is small. Substituting 

h = @ ) + A  ( I A l 6  ( h ) )  (4.8) 

into (4.7), expanding the hyperbolic functions about h = (h), and invoking (4.6b), 
we obtain the successive approximations 

K = k tanh(k(h))+O(k'&) (4.9) 

and K = k tanh (k(h))+ [(6(V@)2)/(@z>] sech2 (k(h))+O(k3fi2) .  (4.10) 

The latter approximation is identical with the corresponding approximation to the 
Rayleigh'quotient (see Appendix) and therefore is an upper bound within 1 + O(k2fi2).  

The eigenvalue k and the corresponding eigenfunction @ in the preceding approx- 
imations may be determined from the variational form (1.10). For example, the trial 
functions 

@ = a2x-ix3, @ = (a2r-jrs) cost3 (4.11a, b) 

to the dominant modes in a channel of width 2a and a circle of radius a, respectively, 
yield ka = 1.5718 and 1.8423, which differ from the corresponding exact results, $7~ 
and 1.8412, by 0.06y0. But we emphasize that these are the errors in (4.11a, b) qua 
approximations to the solution of (1.9), not (2.8). 

Consider, as a first example, the semicircular cylinder. Substituting (4.3), (4.11 a) 
and ka = 1.572 into (4.9)/(4.10), we obtain w ( a / g ) i  = 1.152/1.193, which is 1.1 % 
below/2.5 % above Rayleigh's second approximation (see above). 

As a second example, consider the family of circular basins described by (3.4) and 

h = Z-(Z2-a2+r2)t, Z = $(S+S-l) (0 < S ,< 1). (4.12a, b) 

Substituting (4.1 1 b) and (4.12) into (4.10) and carrying out the integrations, we obtain 

(3.631, 

- = ka tanh (k(h))+$ 
w2a 

9 
(4 .13~)  

(h) = !jd(l-+P) (ka = 1.8423), (4.13b) 

which is compared with the corresponding approximation (4.9) and the exact result 
(3.5) in figure 1 .  The limiting results for the paraboloid (840) and the cone (8 = 1) 
are wa/(2gd)i = 1.030 and w(a/g)t = 1.120, respectively, which compare with the 
exact limits of 1 .  The corresponding approximations provided by (4.9) are 0.921 and 
1.001, respectively (it is evident from figure 1 that the proximity of the last 
approximation to the exact result is somewhat fortuitous). It should be noted that 
16 I/ (h)  is not small for the family (4.12) (it has a maximum of 2 for the cone), which 
therefore provides a rather severe test of the approximation (4.10). 
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FIGURE 1.  The approximations (4.9) ( - - - - )  and (4.3) (---) compared with the exact result (3.5) 
(-) for the family of circular basins (4.12). 

5. Self-adjoint formulation 
The partial differential equation 

where the operator Y is defined by 
Y@ = K@, 

Y = $Pa, 
may be obtained by solving (2.6) for Y and then invoking (2.7). We remark that in 
this derivation, in contrast to that of (2.8)' Y is determined by kinematics alone, i.e. 
by Laplace's equation and the kinematical boundary condition (2.2), after which the 
dynamicel boundary condition (2.4) implies (5.1), which identifies K as an eigenvalue 
of Y .  

Expanding the operators in (2.6) and solving for Y, we obtain 

which may be expanded in powers of 8.t The first approximation to (5.1), retaining 
only the leading term in Y, is essentially (1.2). The second approximation, for which 
the implicit error factor is 1 + O(P) ,  is 

V.(h VQ, ++h2 vv* (h  VQ,) -th3 VW} + KQ, = 0. (5.4) 

It can be demonstrated that (5.4) is self-adjoint. I have not proved that Y is 
self-adjoint at  any order, but this appears to follow indirectly from Rayleigh's 
principle (see below). 

t The convergence of this expansion may be tested for a particular operand, but the question 
of convergence to the true solution for specified h remains open. The convergence of the 
corresponding expansion of the eigenvalue for the self-adjoint operator is guaranteed by Rayleigh's 
principle. 
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6. The Rayleigh quotient 
The mean kinetic and potential energies of the fluid motion are given by 

(0 = f p S ( & Q  = iPS(@W (6.1) 

and ( v) = apgs ( F )  = apg-1u2s (a", (6.2) 

where (2.5) and (2.3 b) have been invoked and the overbar implies a temporal average. 
Equating (T) and (V)  and invoking w2/g  = K and Y = 9@, we obtain 

K = (@6P@) / (G2)  (6.3) 

as a generalization of (1.5). It follows from Rayleigh's principle that the quadratic 
functional in (6.3) is a minimum with respect to first-order variations of @ about the 
true solution of (5.1) and (2.9). (The variational form (6.3) also may be derived by 
multiplying (5.1) by @ and integrating over S, but it then would remain to identify 
the result as the Rayleigh quotient.) 

Approximating Y as in (5.4) and invoking Green's theorem and (2.9), we obtain 

(6-4) K = (h{ (v@)' - $(h V2@)' - (h V2@)  (Vh v@) - (Vh v@)2})/( G2) ,  

wherein the implicit error factor is 1 +0(61). 
Adopting the trial function @ = x in (6.4), we obtain 

K = (h(1 -h:)) / (X2)  (6.5) 

as a counterpart of (4.2), but the error factor now is 1 + O(s4, e2),  where E is the relative 
error in @, whereas the error factor (4.2) may be as large as 1 + O(s). Retaining terms 
through O(h6) in the expansion of 14 with the trial function @ = x,  we obtain (after 
partial integrations via Green's theorem) 

K = (h -hh: -ph ,  V",-h2h,(Vh.Vh,))/(X2), (6.6) 

for which the error factor is 1 +O(sb, e2). We note that these last approximations, 
unlike (4.2), involve derivatives of h and may fail if h is singular; e.g. (6.5) yields K = 0, 
and (6.6) contains divergent integrals, for (4.3), which is singular at x = fa. 

Consider, for example, the circular paraboloid described by (4.4), the substitution 
of which into (6.5) and (6.6) yields (cf. (4.5a, b)) 

and 

w2a2 

2gd= 1-v2 
( 6 . 7 ~ )  

(6.7b) 

It appears from (6.9b) that the respectively, in which the coefficient -% is exact. 
coefficient of s4 in (6.7 b), $, is closer to the k a c t  result + than the coefficient t in (4.5 a ) .  
On the other hand, the approximation (4.5~) appears to be superior to (6.7~). 

We proceed to the next variational approximation by substituting 
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into (6.3), retaining the terms through O(h5) in the expansion of 9, and requiring K 

to be stationary with respect to the parameter C. The end results are 

(6.9a, b) 

in which the coefficients of d2 and 64 are exact. These last results may be confirmed 
by solving (2.8) to the required approximation, which yields (6.9b) and 

This work wm supported in part by the Physical Oceanography Division, National 
Science Foundation, NSF Grant OCE81-17539, and by the Office of Naval Research, 
Contract NR 062-318 (430). 

Appendix. Matrix formulation 

of (1.9), which may be normalized to satisfy 
A complete set of orthogonal functions in S, {$n ; kn},  is provided by the solutions 

<@m 9,) = am,, < V ~ m * V $ n )  <qmn> = amnki,  (A la,b) 

where Sm, is the Kronecker delta. The solution $, = constant, which is associated 
with the eigenvalue k, = 0, is omitted in consequence of the constraint (2.10). 

Substituting the Fourier expansion 

where the summation is over the complete set (except $,), into (2.8), invoking 
P$,, = k i  @n,  multiplying the result through by $,, integrating over S, and invoking 
Green's theorem, we obtain the homogeneous set 

E ( S m n - K C m n )  An = 0 
n 

for the determination of the eigenvalues and the corresponding A,, where 

C,, = ki2<qmn cosh k,  h ) ,  S,, = k;'<q,, sinh k ,  h ) .  (A 4% b) 

The system (A 3) is the counterpart of (2.8). Multiplying i t  by the inverse matrix 
[Cmn]-l and introducing 

[ L m n I =  [Cmnl-' [ S m n l ,  (A 5 )  

we obtain 

as the counterpart of (5.1). The corresponding counterpart of (6.3) is 
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The preceding results may be simplified by invoking (4.8) and expanding Cmn, S,, 
and Lmn in powers of A. Neglecting O(h2) and invoking (A 1 b), we obtain 

Cmn = am, cash (kn<h))  +k,’<qmn A> sinh (kn<h)) ,  

Smn = amn k n  sinh (kn<h))  + <qmn A) cash (kn<h)) ,  

(A 8a)  

(A 8b) 

Substituting (A 9) into (A 7) and adopting the trial function An = aln, where n = 1 
typically but not necessarily signifies the dominant mode, we obtain 

K = L,, = k, tanh (k l (h ) )+  (q, ,  A )  secha (kl<h)), (A 10) 

which is equivalent to (4.10). 
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